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ABSTRACT
In this study, we introduce a novel trigonometric model known as the Modified Arc-
tan Exponential distribution. This model is created by compounding the Cauchy
family of distributions with the exponential distribution serving as the baseline dis-
tribution. Our aim is to use this model for analyzing lifetime data. We have derived
mathematical expressions for various statistical functions, including the probability
density function, distribution function, survival function, quantile function, haz-
ard rate function, reversed hazard rate function, cumulative hazard rate function,
skewness, and kurtosis. In addition, we have provided visual representations of the
probability density and hazard rate curves. The COVID-19 second wave data in
Nepal were collected from May 1, 2021, to September 30, 2021, as provided by
Worldometer, World Health Organization (WHO). To assess the effectiveness of our
proposed model, we applied it to a dataset concerning the second wave of COVID-19
cases in Nepal. We estimated the model parameters using three distinct techniques:
maximum likelihood, least squares, and Cramer’s-von Mises. To validate the model,
we employed a range of statistical criteria, including Akaike’s Information Crite-
rion, Bayesian Information Criterion, Corrected Akaike’s Information Criterion, and
Hannan-Quinn Information Criterion. We also used P-P and Q-Q plots for validation
purposes. To gauge the goodness of fit of our model to the data, we conducted the
Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises tests. These tests
were carried out to assess whether our model is suitable for analyzing the provided
data. Our empirical findings demonstrate that, when compared to alternative life-
time distributions, our suggested distribution not only provides a better fit but also
offers increased flexibility for the analysis of lifetime data. All numerical calculations
were made using the R programming language.

KEYWORDS
Cauchy family of distribution, COVID-19, Exponential distribution, hazard rate
function, Maximum Likelihood Estimation, Second wave.

1. Introduction

Lifetime distribution, alternatively referred to as survival analysis or time-to-event
analysis, is a statistical method employed to examine the duration until a specific
event of interest takes place. This event could be anything that has duration, such
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as the failure of a machine, the onset of a disease, the time until a customer makes a
purchase, or even the lifespan of a living organism. Lifetime distribution provides valu-
able insights into the probability of an event happening at a specific time and helps in
making predictions and informed decisions in various fields, including engineering, life
sciences, medicine, biology, insurance, healthcare, finance, and social sciences. Study-
ing continuous probability distributions, such as the exponential, Cauchy, Gamma and
Weibull distributions, is a common practice in statistical literature for the analysis of
lifetime data. These probability distributions play a crucial role in understanding and
modeling the variability in lifetimes, making them essential tools in fields like reliability
engineering, survival analysis, and actuarial science. By examining these distributions,
researchers and analysts can gain valuable insights into the behavior of data points over
time, allowing them to make informed decisions and predictions in various real-world
scenarios. In recent years, considerable attention from researchers has been directed
towards the exponential distribution due to its efficacy in modelling lifetime data. Its
favourable attributes stem from closed-form solutions available for numerous survival
analyses. Nevertheless, although the exponential distribution is frequently applicable
when assuming a consistent failure rate, real-world failure rates often display fluc-
tuations. These variations in real-world failure rates can arise due to a multitude of
factors, such as changing environmental conditions, aging components, or manufac-
turing inconsistencies. Consequently, relying solely on the assumption of a constant
failure rate from the exponential distribution may not accurately model the complex-
ities of many practical scenarios. Consequently, relying on the exponential lifetime
model in a random manner can be both inadequate and unrealistic. In recent times,
novel classes of models have emerged, focusing on adaptations and enhancements to
classical probability models. Notably, Marshall and Olkin (2007) have introduced some
of these modifications. Researchers have also made considerable efforts to develop new
distributions that extend established ones and offer greater flexibility for handling
encountered data. Some approaches involve introducing additional parameters to ex-
isting distributions to create broader families of models. Numerous models in the field
of statistics have been introduced, featuring additional parameters designed to produce
unique probability distributions. These additional parameters have been incorporated
into the models to enhance their ability to capture complex patterns and variations in
data. For example, Rinne (2009) and Pham and Lai (2007) have put forth models that
include extra parameters aimed at generating novel statistical models. Over the past
few decades, the Exponential distribution has often served as the parent distribution
for creating novel distributions families. Numerous researchers have introduced vari-
ous adaptations of the Exponential distribution. These modifications have paved the
way for the development of diverse probability distributions, each tailored to address
specific real-world scenarios and applications. Some of the well-known life time models
found in the literature by the modification of the Exponential distribution are Expo-
nential power distribution (Smith & Bain, 1975), Generalized exponential distribution
(Gupta & Kundu ,1999), Exponential-Weibull distribution (Cordeiro et al., 2014),
Beta GE (Barreto- Souza et al., 2010), Modified exponential distribution (Rasekhi et
al.,2017), Transmuted GE distribution (Khan et al., 2017), Alpha power transformed
extended exponential distribution (Hassan et al.,2018), A new extension of exponential
distribution(Almarashi et al. ,2019), Truncated Cauchy power–exponential distribu-
tion (Chaudhary et al.,2020), Ranked set sampling with application of modified kies
exponential distribution(Aljohani et al.,2021), Truncated exponentiated-exponential
distribution(Ribeiro-Reis,2022), Inverse Exponentiated Odd Lomax Exponential Dis-
tribution (Chaudhary et al.,2022), Power-modified kies-exponential distribution( Afify
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et al.,2022) and the inverse exponential power distribution (Chaudhary et al., 2023).
In the context of a non-negative random variable X, the exponential distribution with
parameter δ is employed when its cumulative distribution function (CDF) can be
formulated as follows:

G(x) = 1− e−δx;x ≥ 0, δ > 0 (1.1)

An extension of the exponential distribution introduced by (Nadarajah &
Haghighi,2011) allows for a wider range of probability distributions and is a general-
ization of the traditional exponential distribution, enabling more versatile modelling
in various statistical applications. This extension allows for a more nuanced analysis
and application of exponential-like phenomena in various fields. The generalization
consistently places its mode at zero, while also accommodating the possibility of
increasing, decreasing, and constant hazard rates. We have chosen the exponential
distribution as the base distribution because of its extensive use, simplicity, and
mathematical manageability. Its mathematical flexibility empowers researchers and
practitioners to effectively model and analyze diverse phenomena within fields like
statistics, physics, and engineering, making it a valuable tool for advancing knowledge
and innovation. In this study, we present a trigonometric model. Incorporating a
wide range of real-world applications, this trigonometric model is designed to be
adaptable and user-friendly, making it a valuable tool for students, educators, and
professionals alike. Throughout this study, we will delve into the theory behind
our model, its practical implications, and examples of its successful application in
various scenarios. Gómez-Déniz and Caldeŕın-Ojeda (2015) defined to develop Pareto
ArcTan (PAT) distribution by choosing the classical Pareto survival function as the
parent distribution and incorporating the inverse of the circular tangent function
to model Norwegian fire insurance data. Chaudhary et al. (2021) introduced the
Arc tan generalized exponential distribution, which exhibits a flexible hazard rate.
The flexibility of the hazard rate opens up opportunities for its application in
various statistical and modelling contexts. Researchers can utilize this distribution
to better understand and analyze data with non-constant hazard rates, contributing
to advancements in statistical science. Chaudhary et al. (2021) also suggested Arc
tan exponential extension distribution using the arc-tan-G family of distribution by
choosing exponential extension distribution as parent distribution. The Arctan-X
family of probability distributions, proposed by (Alkhairy et al., 2021), has garnered
significant attention in the field of statistics and data analysis due to its unique
properties and potential applications. These distributions are derived from the inverse
trigonometric function known as the arctangent function. These distributions have
demonstrated superior goodness-of-fit when applied to various types of data, including
actuarial data, financial data, and related datasets within these fields. In this research,
we have derived a new distribution using Cauchy family of distribution. In literature
different probability models are available that are formulated using Cauchy family
of distribution as Half-Cauchy modified exponential distribution (Chaudhary et
al.,2022) and Half- Cauchy exponential extension distribution (Telee & Kumar, 2022).
Consider Cauchy family of distribution on a non-negative random variable X such
that x > 0 and θ > 0 which is defined by
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H(x) =
2

π
arctan

{
−1

θ
log {1−G(x)}

}
(1.2)

where G(x) is distribution function of the base line distribution. The objective of
this study is to create a more adaptable probability distribution and conduct data
analysis for the second wave of COVID-19 in Nepal using this distribution. In pur-
suit of this objective, we aim to establish a probability distribution model that offers
greater flexibility, allowing for a more comprehensive and insightful analysis of the
COVID-19 second wave in Nepal. This model will serve as a valuable tool in under-
standing the dynamics and trends associated with the pandemic within the Nepalese
context, ultimately aiding in the development of more effective public health strate-
gies and interventions. The subsequent structure is employed to present the various
sections of this study. Section 2 will introduce the Modified Arctan Exponential distri-
bution (MATE) while elucidating its mathematical and statistical properties. Moving
forward to Section 3, we will explore estimation techniques, including discussions on
least-squares (LSE), Cramer-Von-Mises (CVME), and maximum likelihood (MLE). In
Section 4, our focus will shift towards providing model parameter estimates using data
from the COVID-19 second wave in Nepal. Additionally, we will showcase examples of
different criteria used to assess the goodness of fit of the proposed model. All numeri-
cal calculations were caried out using the R programming language. In the concluding
Section 5, this study has aimed to offer valuable insights into the field of statistical
analysis and modeling. We hope that the information presented in this paper serves
as a valuable resource for researchers, practitioners, and policymakers alike.

2. The Modified Arctan Exponential (MATE) Distribution

Using the exponential distribution as base distribution from equation (1.1) in Cauchy
family of distribution of equation (1.2), the new derived distribution function is as
follows:

H(x) =
2

π
arctan

{
δx

θ

}
(2.1)

Modifying above distribution function by adding two extra parameters α (scale
parameter) and λ (shape parameter) to make it more applicable and flexible with
distribution function as

F (x) =

[
2

π
arctan

{
δxeαx

θ

}]λ
;x ≥ 0, θ, δ, α, λ > 0 (2.2)

For simplicity, we have assumed, δ
θ = β , hence

F (x) =

[
2

π
arctan {βxeαx}

]λ
;x ≥ 0, α, β, λ > 0 (2.3)

Expression (2.3) is the CDF of the proposed model which is denoted by MATE distri-
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bution and the associated probability density function (pdf) is given by (2.4).

f(x;α, β, λ) = λβ

(
2

π

)λ

eαx (1 + αx) {arctan (βxeαx)}λ−1

{
1 + (βxeαx)2

}−1
;x ≥ 0, α, β, λ > 0

(2.4)

In the following section, we delve into different key properties of the suggested
model. These include the survival function, hazard rate function, reversed hazard
rate function, cumulative hazard rate function and quantile function. Additionally, we
investigate the model’s behavior as it approaches its asymptotic limits.

2.1. Survival function

The survival function, labeled as S(x), shows the likelihood of surpassing a specific
point x without encountering an event. It complements the cumulative distribution
function (CDF). Equation (2.5) furnishes the survival function for the suggested model.

S(x) = 1−
[
2

π
arctan {βxeαx}

]λ
;x ≥ 0, α, β, λ > 0 (2.5)

2.2. Hazard rate function

The hazard rate function, labeled as h(x), signifies how quickly failures happen at a
given time point. It is computed by dividing the probability density function (pdf) by
the survival function S(x) of the distribution. In the proposed model, equation (2.6)
precisely defines h(x).

h(x) = λβ

(
2

π

)λ

eαx (1 + αx) {arctan (βxeαx)}λ−1

{
1 + (βxeαx)2

}−1
{
1−

[
2

π
arctan {βxeαx}

]λ}−1

;x > 0

(2.6)

Figure 1 presents probability density curves and hazard rate curves for fixed val-
ues of α=0.0073 and λ=5, at different values of β. The figure consists of two panels
that illustrate important aspects of these curves for various parameter settings. In the
left panel, we can observe the probability density curve, which demonstrates how it
varies with changes in the parameters. This variability highlights the model’s ability to
adapt to different types of datasets, showcasing its flexibility. On the other hand, the
right panel of Figure 1 displays hazard rate curves associated with specific parameter
combinations. These hazard rate curves exhibit patterns that include both increasing
and decreasing trends, as well as the distinctive shape resembling an inverted bathtub.
This inverted bathtub shape in the hazard rate curves is a noteworthy feature. It sug-
gests that the risk or hazard of an event can change over time in a non-linear manner.
This graphical representation allows researchers and analysts to gain a comprehensive
view of how these parameters influence the probability distribution and associated
hazard rates, offering valuable information for making data-driven decisions in various
contexts.
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(b) Hazard rate function

Figure 1. Probability density curve and hazard rate curve.

The equation (2.7) defines the reversed hazard rate, denoted as hrex(x), for this model.

hrev(x) = λβ

(
2

π

)λ

eαx (1 + αx) {arctan (βxeαx)}λ−1
{
1 + (βxeαx)2

}−1
[
2

π
arctan {βxeαx}

]−λ

(2.7)

2.3. Cumulative Hazard rate function

Cumulative hazard rate function The equation (2.8) gives us the cumulative hazard
rate function, denoted as H(x), for the suggested model.

H(x) = − lnS(x) = − ln

{
1−

{
2

π
arctan {βxeαx}

}λ

;x > 0, α, β, λ > 0

}
(2.8)

2.4. Quantile function

The quantile function is defined for MATE by equation (2.9)

βxeαx − tan
(π
2
p1/λ

)
= 0; 0 ≤ p ≤ 1 (2.9)

2.5. Asymptotic Behavior

We can examine the density function’s behavior as it approaches zero and infinity by
ensuring thatlim

x→0
f(x) = lim

x→∞
f(x). If the model follows these asymptotic properties,

it will have a mode. This evaluation requires us to analyze the limits at both ends.

lim
x→0

f(x) = lim
x→0

λβ

(
2

π

)λ

eαx (1 + αx) {arctan (βxeαx)}λ−1
{
1 + (βxeαx)2

}−1
= 0

(2.10)
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lim
x→∞

f(x) = lim
x→∞

λβ

(
2

π

)λ

eαx (1 + αx) {arctan (βxeαx)}λ−1
{
1 + (βxeαx)2

}−1
= 0

(2.11)
Since lim

x→0
f(x) = lim

x→∞
f(x) so we can say that the mode of the proposed model

exists. This information helps us determine whether the distribution has a peak or
mode, which can be important in various statistical and analytical contexts. Therefore,
analyzing the asymptotic behavior of the density function is a fundamental step in
understanding the behavior of the underlying data or model. Skewness characterizes
the uniformity of the data. In this study, we utilized Bowley’s skewness coefficient, as
proposed by (Al-saiary et al., 2019), which is based on quantiles as follows:

SK (B) =
Q (0.75)+Q (0.25) -2*Q (0.50)

Q(0.75)-Q(0.25)
(2.12)

The Octiles Kurtosis coefficient, as described in studies by( Moors ,1998) and (Al-
saiary et al. ,2019), can be determined using the following formula:

Ku=
Q(0.375)-Q(0.625)-Q (0.125)+Q (0.875)

Q (0.75)-Q(0.25)
(2.13)

3. Techniques of parameters estimation

Parameter estimation plays a crucial role in the process of fitting and formulating
models. In practical applications, a variety of methods are available for estimating
parameters. In this study, we employed three distinct approaches for parameter esti-
mation: Maximum Likelihood Estimation (MLE), Least Square Methods of estimation
(LSE), and Cramer Von Mises methods of estimation (CVM). Each of these estima-
tion methods has its unique advantages and is applied in specific situations based
on the nature of the data and the underlying statistical assumptions. MLE, for in-
stance, is a widely used technique that aims to find parameter values that maximize
the likelihood of observing the given data. On the other hand, LSE focuses on mini-
mizing the sum of squared differences between observed and predicted values, making
it suitable for certain regression models. CVM, a less commonly employed method,
assesses the goodness of fit by comparing the empirical distribution of the data with
the expected distribution defined by the estimated parameters. The choice of which
estimation method to use can significantly impact the accuracy and reliability of the
model, and it is essential to select the most appropriate approach for your specific
research objectives and dataset characteristics. In this study, we explore the strengths
and limitations of these three estimation techniques to better understand their suit-
ability for the modeling task at hand.

3.1. Maximum Likelihood Estimation (MLE)

This estimation method depends on optimizing the model’s log likelihood function.
Imagine we have a random sample of ’n’ items from MATE, which we’ll represent as
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.In this situation; the log likelihood function can be formulated as follows:

l(α, β, λ|x) = n ln(λβ) + nλ log(2/π) +

n∑
i=1

xi +

n∑
i=1

(1 + αxi)+

(λ− 1)

n∑
i=1

ln (arctan (βxeαx))−
n∑

i=1

ln
[
1 + (βxeαx)2

] (3.1)

After obtaining the derivatives of equation (3.1) with respect to α, β, and λ, we
can proceed to calculate the first-order and second-order partial derivatives of the log-
likelihood function. To estimate the parameters of the proposed model, we equate the
first-order derivatives to zero and solve for them. However, in practice, solving these
first-order partial derivatives analytically can be complex or even impossible for certain
models. This is particularly true for models with intricate or nonlinear relationships
between parameters and the likelihood function. In such cases, resorting to computer
programming and numerical optimization techniques becomes a practical and effective
approach. These methods allow us to iteratively refine our parameter estimates until
we converge to the values that optimize the likelihood function, ensuring our model
fits the data as closely as possible.

3.2. Estimation using Least-Square (LSE)

We start by working with a set of ordered random variables, denoted as X(1) < X(2) <
. . . < X(n). Afterward, we draw a random sample {X1, X2, . . . , Xn}of size n from

a distribution described by the function F(.). To create a function A, we use the
cumulative distribution function (CDF) of these ordered statistics, which is represented
as F (X(i))and is explained in equation (3.2).

A (x;α, β, λ) =

n∑
i=1

[
F (X(i))−

i

n+ 1

]2
(3.2)

Once we’ve minimized function (3.2) with respect to the parameters, the next step
involves solving for these parameter values, ensuring that they align with the intended
specifications of the MATE model. This process is crucial for fine-tuning the model
and making it suitable for its intended purpose.

3.3. Cramer-Von-Mises (CVM) method

We can determine the values of α, β, and λ by using this method to minimize the
function (3.3).

Z (X;α, β, λ) =
1

12n
+

n∑
i=1

[
F (xi:n|α, β, λ)−

2i− 1

2n

]2
(3.3)

To find both the first and second-order partial derivatives of function Z, we perform
differentiation on equation (3.3) with respect to α, β, and λ. Solving these nonlinear
equations enables us to determine the estimated parameters. This information is es-
sential for understanding how changes in the input variables α, β, and λ impact the
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behavior of the function. It provides a deeper understanding of the relationships be-
tween these parameters and allows us to make more informed decisions or predictions
based on the function’s behavior. Parameter estimation and applicability testing

4. Parameter estimation and applicability testing

For testing the applicability of the model, a second wave of COVID-19 real data
set is used. The second wave of the COVID-19 pandemic in Nepal commenced in
early April 2021, with just one reported death on the first day of that month. As the
days progressed, the daily infection rate surged significantly, culminating in a peak
in May. On May 11, 2021, the country saw an average of 9,317 new cases reported
daily, while daily fatalities reached approximately 225, as reported by the Ministry
of Health and Population, Government of Nepal. Likewise, the maximum number of
deaths occurred in Nepal during the second wave on May 19, 2021 was 246 out of
8064 new cases reported. In order to evaluate the suitability of the proposed model,
we utilized a dataset encompassing the total number of COVID-19-related deaths in
Nepal during the second wave, spanning from May 1, 2021, to September 30, 2021,
as provided by (Worldometer, 2023). 19, 27, 37, 55, 58, 54, 50, 53, 88, 139, 225, 168,
214, 203, 187, 145, 214, 196, 246, 190, 177, 129, 193, 185, 169, 145, 106, 96, 116, 109,
114, 68, 101, 75, 101, 68, 99, 92, 108, 81, 59, 67, 61, 46, 53, 41, 52, 39, 44, 34, 51, 46,
41, 81, 24, 27, 30, 34, 42, 20, 41, 33, 34, 19, 27, 23, 15, 28, 29, 20, 22, 20, 18, 12, 18,
33, 43, 21, 23, 32, 25, 30, 24, 18, 16, 18, 25, 20, 33, 16, 27, 23, 18, 23, 24, 35, 37, 25,
19, 55, 22, 35, 30, 32, 27, 20, 33, 35, 27, 42, 33, 26, 30, 24, 24, 35, 44, 26, 25, 27, 24,
16, 20, 20, 16, 23, 9, 20, 20, 21, 10, 14, 21, 12, 13, 16, 19, 7, 11, 10, 16, 12, 8, 5, 6, 13,
9, 6, 9, 7, 12, 8, 12. Parameters are estimated using optim () function of R language
programming (R Core Team, 2022). To investigate the exploratory characteristics of
the curve, we computed summary statistics for the utilized data and created graphical
plots, including Box plots and TTT plots. The summary statistics can be found in
Table 1. This holistic approach provides a robust foundation for further analysis and
interpretation of the curve’s dynamics.

Table 1. Summary statistics of the data.

Min. Q1 Q2 Q3 Mean Max. S.D. Skewness Kurtosis

5.00 20.00 29.00 55.00 51.35 246.00 53.91 1.88 5.66

The data exhibits positive skewness and is not normally distributed. It has a mini-
mum value of 5 and a maximum value of 246, resulting in a range of 241.In the second
wave of COVID-19 in Nepal; it was found that an average of 51 people per day lost
their lives. Figure 2 presents both the box plot and the TTT plot for this dataset. The
box plot displays the interquartile range, median, and any potential outliers, while the
TTT plot can provide additional insights into the distribution shape and symmetry.
Analyzing these plots and the characteristics of the data can help researchers and an-
alysts make informed decisions about how to handle and interpret this non-normally
distributed dataset

Parameters estimated using MLE is mentioned in table 2. Table 2 also contains the
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Figure 2. Boxplot and TTT plot of the data.

standard error of estimates of the parameters. In Figure 3, we plot and display his-

Table 2. Maximum likelihood
estimates and standard error of es-
timates(SE).

Parameters MLE SE

α 0.0073 0.0020
β 0.1279 0.0972
λ 5.3110 4.0442

tograms alongside the probability density curve, as well as the empirical cumulative
distribution function (CDF) compared to the fitted CDF. Comparing the histogram
to the probability density curve and the empirical cumulative distribution function
(CDF) to the fitted CDF in Figure 3 allows us to assess the model’s goodness of fit to
the considered data.
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Figure 3. Histogram versus pdf and Empirical versus fitted cdf

To assess the reliability of the estimated parameters, we employ two additional
techniques: the Least Square Method (LSE) and Cramer’s von Mises (CVM) meth-
ods of estimation in Table 3. The parameters obtained through these methods exhibit
very similar results. Table 4 displays a comparative evaluation of estimation tech-
niques using four distinct information criteria values and negative log-likelihood values.
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Table 3. Estimated parameters using
MLE, LSE and ,CVM.

Parameters MLE LSE CVM

α 0.0073 0.0086 0.0091
β 0.1279 0.1277 0.1257
λ 5.3110 5.3104 5.3105

The examination discloses that the Maximum Likelihood Estimation (MLE) approach
demonstrates the most favorable information criteria values in contrast to the other
two techniques This robust preference for the Maximum Likelihood Estimation (MLE)
method is indicative of its superior performance in modeling the COVID-19 second
wave dataset. The MLE method outperforms the other approaches in terms of fitting
the data and providing a more accurate representation of the underlying patterns.
This finding underscores the significance of selecting the MLE method when dealing
with similar datasets, as it consistently outshines alternative methods in estimating
the parameters and delivering a more precise analysis.

Table 4. Information criteria for different methods of estimation.

Methods LL AIC BIC CAIC HQIC

MLE -732.3457 1470.691 1479.783 1470.852 1474.384
CVM -732.7788 1471.558 1480.649 1471.719 1475.251
LSE -732.6053 1471.211 1480.302 1471.372 1474.904

To check the model validation, P-P plot and Q-Q plots of the model taking the
data are obtained and displayed in figure 4.

To assess and compare the suitability of the proposed model MATE alongside with
methods of estimation, we calculate test statistics, including Kolmogorov-Smirnov
(KS), Cramer’s Von Mises(W), and Anderson-Darling(A2). Table 5 conveniently
presents the corresponding p-values for these statistics. These p-values serve as valu-
able indicators, aiding us in making informed assessments and comparisons of the
methods of estimation performance and suitability in fitting the data. It also contains
the corresponding p values. It shows that methods of estimations used here supports
the goodness of fit under Kolmogorov-Smirnov, Cramer’s Von Mises, and Anderson-
Darling methods of testing goodness of fit.

Table 5. Goodness of fit statistics and p values for different
methods of estimation.

Methods KS(p-value) W(p-value) A2(p-value)

MLE 0.0792(0.2918) 0.1694(0.3358) 0.9891(0.3629)
CVM 0.0693(0.4536) 0.1477(0.3970) 1.1693(0.2795)
LSE 0.0716(0.4130) 0.1482(0.3953) 1.1021(0.3078)

5. Model Comparison

This study assesses the proposed model by comparing it to six other models doc-
umented in existing literature. The six lifetime models under consideration include
include the Generalized Exponential Extension (GEE) distribution (Lemonte, 2013),
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Figure 4. P-P and Q-Q plot

Lomax Exponentiated Weibull (LEW) distribution (Ansari & Nofal, 2020), General-
ized Weibull Extension (GWE) (Sarhan and Apaloo, 2013), Odd Lomax Exponential
(OLE) distribution (Ogunsanya et al., 2019), Weibull Extension (WE) distribution
(Tang et al., 2003) and Half Logistic Nadarajah Haghighi (HLNHE) distribution (Joshi
& Kumar,2020a).
Table 6 provides the estimated parameters for all these models using the given COVID-
19 second wave real dataset in Nepal.

Table 6. Estimated parameters of competing models.

Methods α β λ θ

MATE 0.0073 0.1279 5.3110 -
GEE 0.2933 23.3805 5.3161 -
LEW 73.3614 0.6270 - 0.1537
GWE 375.6404 0.1155 0.4643 -
OLE 0.0796 0.0794 3.4232 -
WE 10.1098 0.4131 0.0143 -
HLNHE 0.0108 0.1779 19.3000 -

We compared the models by calculating different information criteria values for each
of them and summarized the findings in Table 7. The results indicate that the proposed
model has the lowest information criteria values, indicating that it is a more suitable
fit for the dataset when compared to the other competing models. This superiority in
information criteria values suggests that the suggested model provides a more precise
representation of the data, surpassing the alternative models being considered. These
findings highlight the robustness and effectiveness of the proposed model in capturing
the underlying patterns and relationships within the dataset. Moreover, the superior
performance of the proposed model underscores its potential in enhancing our un-
derstanding of the underlying dynamics within the dataset. This model’s ability to
outperform its competitors in terms of information criteria values signifies its suitabil-
ity for making informed decisions and predictions based on the data.
To assess and compare the suitability of the proposed model MATE alongside com-
peting models, we calculate test statistics, including Kolmogorov-Smirnov, Cramer’s
Von Mises, and Anderson-Darling. Table 8 conveniently presents the corresponding
p-values for these statistics. These p-values serve as valuable indicators, aiding us in
making informed assessments and comparisons of the model’s performance and suit-
ability in fitting the data.
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Table 7. Information criteria values for MATE and competing models.

Methods LL AIC BIC CAIC HQIC

MATE -732.3457 1470.691 1479.783 1470.852 1474.384
GWE -733.7814 1473.563 1482.654 1473.724 1477.256
GEE -733.8717 1473.743 1482.835 1473.904 1477.436
LEW -733.9826 1473.965 1483.056 1474.126 1477.658
OLE 742.4357 1490.871 1490.871 1491.032 1494.564
HLNHE -753.5461 1513.092 1522.184 1513.253 1516.785
WE -776.5519 1559.104 1568.195 1559.265 1562.797

Table 8. Goodness of fit statistics and p values for different
methods of estimation .

Methods KS(p-value) W(p-value) A2(p-value)

MATE 0.0792(0.2918) 0.1694(0.3358) 0.9891(0.3629)
GEE 0.0848(0.2208) 0.1979(0.2718) 1.1902(0.2712)
LEW 0.0846(0.2234) 0.2077(0.2532) 1.2407(0.2525)
GWE 0.0834(0.2376) 0.1919(0.2840) 1.1624(0.2822)
OLE 0.1631(0.0006) 0.9614(0.0030) 4.8013(0.0036)
HLNHE 0.1270(0.0144) 0.7129(0.0120) 4.6682(0.0041)
WE 0.1601(0.0008) 1.5553(0.0001) 8.9759(0.0000)

When the test statistics values are lower and the p-values are higher for the
proposed model in comparison to those of the competing model, it indicates that
the proposed model provides a better fit to the dataset than the competing model.
This suggests that the proposed model offers a stronger alignment with the dataset,
demonstrating its superior performance when compared to the competing model.

To compare the proposed model with other models, we’ve generated probability
density function (PDF) curves for all the models and a corresponding histogram, as
shown in the left panel of Figure 5. Additionally, in the right panel of Figure 5, we’ve
plotted empirical cumulative distribution function (CDF) curves for all the models,
along with the fitted CDF curve. This graphical representation aids in our comparative
evaluation of the models under consideration.
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6. Conclusion

In this research, we introduce a novel trigonometric model called the Modified Arctan
Exponential distribution (MATE). The MATE is constructed by combining the
Cauchy family of distributions with the exponential distribution as the base model.
This distribution exhibits a positively skewed and unimodal shape. We conducted a
comprehensive analysis of various statistical properties associated with the MATE
model, revealing its remarkable flexibility in accommodating both increasing and
decreasing hazard functions, as well as an inverted bathtub-shaped hazard function.
These findings were derived from a thorough graphical analysis of the Probability
Density Function (PDF) and Hazard Rate Function (HRF) of the MATE. To estimate
the model’s parameters, we utilized three distinct methods: Cramer’s-von Mises
Estimation (CVME), Least Squares Estimation (LSE), and Maximum Likelihood
Estimation (MLE). These approaches provided valuable insights into the accuracy
of parameter estimation for our model. Furthermore, we assessed the performance
of the MATE distribution by applying it to real-world data from the second wave of
COVID-19 in Nepal. The results of this application demonstrated that the MATE
distribution offers superior fitting performance compared to several other commonly
used lifetime models. This highlights the potential utility of the MATE as a valuable
tool for analyzing lifetime data, particularly in complex and dynamic scenarios such
as the COVID-19 pandemic. Our study focused on analyzing the suitability of the
MATE distribution for modeling and understanding complex and dynamic scenarios,
such as the spread of infectious diseases. This is especially significant in the context
of public health, where understanding the dynamics of disease spread and accurately
modeling its impact is crucial for effective decision-making and resource allocation.

In sum up, our research introduces the Modified Arctan Exponential distribution as
a valuable addition to the toolbox of statistical models for analyzing lifetime data. The
practical demonstration of its effectiveness in modeling COVID-19 data highlights its
potential for addressing complex, real-world challenges. As we continue to refine and
adapt statistical tools for a rapidly changing world, the MATE distribution stands
out as a versatile and powerful option for a wide range of applications. Through
rigorous data analysis and the application of this distribution model, we aspire to
provide valuable insights that can inform healthcare professionals, policymakers, and
the general public. These insights may contribute to more informed decision-making,
better resource allocation, and improved strategies for mitigating the effects of future
waves of the COVID-19 pandemic in Nepal.
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